

Supersonic Retro-Propulsion for Future High-Mass Robotic Mars Lander Missions

Marcus Lobbia¹

Co-Authors: Aron Wolf¹ and Charles Whetsel¹

¹ Jet Propulsion Laboratory, California Institute of Technology

This work includes contributions from a number of individuals at JPL, including: Joel Benito, Rob Grover, Emily Howard, Ashley Karp, Eddie Lau, Rob Manning, Barry Nakazono, Connor Noyes, Hoppy Price, Dan Scharf, Robert Shotwell, Evgeniy Sklyanskiy, Christine Szalai, and David Vaughan

Potential Mars Sample Return – Notional Architecture

Supersonic Deceleration for Mars

- MSL used a supersonic parachute to land ~1 t on Mars
 - 21.35 m diameter
 - Leveraged Viking and heritage test data

Future >1 t payloads to higher landing elevations will require larger supersonic chutes and new flight testing/validation program

or

Incorporate other technologies to enable heavier payloads to Mars

Supersonic Retro-Propulsion

- SRP is the use of engine(s) firing in the velocity vector direction during the supersonic phase of entry
 - Provides an alternative to supersonic parachutes to decelerate the entry vehicle

Conceptual SRP Entry and Descent Concept

Peak Heating

Hypersonic L/D Guidance

SRP ignition

Powered Descent: Constant Velocity Phase Ground Sensing

Aeroshell Diameter	4.7 m
Mars L _S	150 deg
Ballistic Coefficient	150, 300, 450 kg/m ²
SRP Thrust/Weight	3, 5 Mars-g's
Entry Velocity	4.5, 5.5, 6.5, 7.5 km/s
Landing Site Elevation	-0.5, -1.5, -2.5, -3.5 km

Conceptual SRP MSR Lander – Aeroshell

- Spherical Heatshield
 - 4.7 m diameter
 - Max that can fit 5 m diameter launch fairing
 - Spherical provides potential heating/packaging benefits vs. sphere-cone
- Backshell
 - Steeper angles to increase packaging volume

Prabhu, D., and Saunders, D., "On Heatshield Shapes for Mars Entry Capsules," AIAA Paper 2012-4297, 2012.

Conceptual SRP MSR Lander – Propulsion

MSL Mars Landing Engine example (mono-propellant, 3300 N thrust)

Note SRP requires 3-4x thrust levels vs. MSL

- NTO/MMH bi-propellant
 - Thrust: 8000 N (BC300 cases) or 12,000 N (BC450 cases)
 - 12 engines total (T/W=3 cases) or 20 engines (T/W=5 cases)
 - Area ratio 24:1
 - Driven by aeroshell accommodation constraints
 - Reduces Isp of engines
- Electrically driven pumps provide:
 - Increased chamber pressure
 - Increased Isp
 - Decreases in thruster dimensions (volume)
 - Minimum thruster and prop tank mass
 - Throttleability (estimated to ~65% thrust)
- Drawback has been battery capacity
 - Battery capacity (Li-ion) is now competitive
 - Current assumption 150 W-hr/kg, projected 300-400 W-hr/kg

Conceptual SRP MSR Lander – Configuration

Skycrane SRP Configuration

FETCH ROVER CONCEPT

MOBILE MAV CONCEPT

Conceptual SRP MSR Lander – Trajectory Modeling

- Objective
 - Minimize Propellant Mass Fraction (PMF)
 - PMF = (propellant mass) / (wet mass at ignition)
- Key Inputs
 - Entry velocity, entry flight path angle (FPA),
 bank profile, SRP ignition time, thrust profile
- End State
 - 0.75 m/s descent rate, -90 deg. FPA,
 propellant remaining for 20 s powered hover

Conceptual SRP MSR Lander – Mass Sizing

Lobbia, M., "Sizing Methods for Advanced Mars Entry Descent and Landing Systems, 13th International Planetary Probe Workshop, 2016.

- Moderate-fidelity sizing model tailored for SRP configurations
 - Physics-based and historical sizing relationships (MSL, Phoenix, MER, Pathfinder)
 - TPS sizing based on mass fraction correlation to heat load
- Outputs
 - Useful Landed Mass
 - Subsystem and component mass breakdowns

Results – Conceptual SRP Trajectories

- Larger ballistic coefficient SRP trajectories more shallow and further downrange
- SRP leads to much lower/faster ignition points vs. supersonic chute deploy
- Application of 4-g constraint demonstrates SRP for human precursor missions

200

100

140

120

-20

Altitude (MOLA), km

With 4-g limit, Entry

······ No a limit, SRP burr

1000

2000

Velocity, m/s

MSL Chute Deploy Conditions

6000

With 4-a limit, SRP burn

35

30

₹ 25

Altitude (MOLA), 10 ct 05

12

11

10 9

Results – Propellant Mass Fraction Sensitivities

- 4-g deceleration constraint leads to slight increase in PMF
- PMF relatively insensitive to landing site elevation and entry velocity
- Higher *T/W* cases have lower PMF and ignite at lower altitudes/velocities

Results – Mass Sizing

- Useful landed mass sensitivity
 - Small change with respect to T/W and landing site elevation
 - Decreases with higher entry velocities
 - Due to TPS sizing based on heat load
- 4-g deceleration constraint also reduces useful landed mass due to higher heat loads and TPS mass

Conclusions and Future Work

- High ballistic coefficient SRP is an enabling technology for increasing useful landed mass to Mars surface
 - Eliminates need for large supersonic chutes
 - Reduces sensitivity to some landing requirements (elevation, entry velocity)

Examples show potential for 300 and 450 kg/m² ballistic coefficient SRP designs to land >2x MSL payload to Mars with only a 5% increase in heatshield diameter

jpl.nasa.gov